
1

PRACTICAL GUIDE T O DATA SMOOTHING AND FIL TERING

Ton van den Bogert
October 31, 1996

Summary:
This guide presents an overview of filtering methods and the software which is available in the
HPL.

1. What is filtering/smoothing?

Smoothing is an operation which removes high-frequency fluctuations from a signal. Low-pass
filtering is another term for the same thing, but is restricted to methods which are linear: i.e. if you
want to filter a signal x(t)+y(t), it does not matter whether you apply the filter before or after add-
ing the two signals. Such linear operations can be described by a frequency response. All methods
described here are linear, with the exception of curve fitting.

2. Why (low-pass) filtering?

Random noise can greatly affect the result of certain types of analysis. Two important examples
are: quantification of peaks in the signal (noise can shift the location of the peak, and leads to sys-
tematic overestimation of the height of the peak), and differentiation (noise is amplified by differ-
entiation). Always consider filtering before these types of data analysis. Since random (or ‘white’)
noise is distributed over all frequencies, and signal is typically limited to low frequencies, a reduc-
tion of high frequency components will improve the signal/noise ratio.

3. Methods and software

3.1. Analog (RC, resistor-capacitor) filter

The frequency response is a 1st order Butterworthfilter, and really easy to make (<1 Stano-hour),
cut-off frequency . Connect this between your signal source (transducer or amplifier)
and the A/D converter if you want to get rid of high frequencies before the signal is sampled.
Remember the sampling theorem: if the signal contains frequencies which are higher than half the
sampling frequency, you can get erroneous results. An analog filter is the only way to make sure
that high frequencies don’t reach the A/D converter.
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The frequency response (defined as the ratio between input and output amplitude for a sine wave
of frequency ) of an th order Butterworth filter is:

Higher order analog filters are much harder to make (> 1 Stano-day).

3.2. Digital filters

Digital filters are implemented as a computer program that transforms sampled data. E.g. 2nd
order recursive filter:

The term ‘recursive’ means that past y-values are fed back to the input. The relationship between
input samples ( ) and output samples ( ) is illustrated in the following diagram:
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KinTrak:
Uses a double recursive 2nd order Butterworth filter. This is a 4th order filter (since the asymp-
totic response is ), but NOT a 4th orderButterworth filter because its frequency response is
the square of the 2nd order filter:

Matlab functions:
BUTTER: get coefficients a,b,... for a Butterworth filter with specific order and cut-off frequency
FILTER: filter data
FILTFILT: filter data twice, forward and reverse

Notes:
1. Recursive digital filters always have a time lag between input and output, non-recursive filters
(where y is not fed back to the input side) can be made with zero-lag but do not allow a good
approximation to a Butterworth filter. Solution for the time lag problem: filter twice, second time
in reverse direction.
2. Digital filters require constant sampling interval.
3. It is not (yet) clear to me how the Matlab implementation deals with boundary conditions.

3.3. Curve fitting (or non-linear regression)

Matlab functions:
POLYFIT to get coefficients of best-fitting polynomial
POLYVAL to evaluate polynomial at arbitrary time values
POLYDER to evaluate first derivative at arbitraty time values
LEASTSQ(‘model’, parameters) for other nonlinear regression problems

Other software:
spreadsheet (Lotus, Excel), statistics (SPSS, SAS).

Applications: e.g. quantification of force-deformation curves.
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Notes:
1. Apply only when underlying function is simple; high order polynomials are dangerous when
extrapolated and give large errors in derivatives at the endpoints.
2. Does NOT correspond to a low-pass filter! (frequency response depends on data)

3.4. Smoothing splines

A th degree spline function  is a piecewise th degree polynomial function. The polynomi-
als are joined at the ‘nodes’ (-values in the input data) in such a way that all derivatives up to the

th are continuous. Within these constraints, the function  is selected which mini-
mizes:

where ( ) are the raw data samples, and  denotes the th derivative of . The weight
factor  is the smoothing parameter. With , an interpolating spline will be obtained, with

 a least squares fit of the entire dataset using a single polynomial of degree /2 (e.g.
a straight line for =3. Intermediate values give a compromise between good fit (the first term in
the equation) and the smoothness (the second term). The degree  should be odd:  = 3,5,7 for
cubic, quintic, heptic splines.

Matlab function:
CSAPS: 3rd degree (cubic) smoothing spline

Stand-alone program:
GCV: any odd order spline, with many options to select smoothing parameter. See documentation
(FrameMaker file) ~bogert/help/gcv.fm.

Fortran library:
GCVSPL: this library by Herman Woltring is used in the GCV program and can also be used in
your own Fortran programs. You can interface it with Matlab too. See http://www.kin.ucalgary.ca/
isb/software.

Notes:
1. Sampling interval does not have to be constant for a spline method.
2. Differentiation is not an additional finite difference approximation, as in the digital filter, but
can be done directly from the equations of the polynomials. The GCVSPL package includes a
function SPLDER (spline derivative) that does this for you.

3. Boundary conditions: , so use quintic spline if you need acceleration.

3.5. Fourier analysis

Matlab:
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FFT (fast fourier transform), followed by reduction of amplitudes of high frequencies, followed
by IFFT (inverse fft)

Notes:
1. Simply setting high frequencies to zero can cause ‘ringing’ near sudden transitions in the input
signal.
2. Boundary conditions:  for function ( ) and all derivatives
( ). Real movement data (especially non-cyclic data) does not satisfy these condi-
tions.

Both drawbacks are to some extent avoided in the method published by Hatze (1981).

4. Choosing the ‘optimal’ filter

This is typically an interactive trial and error process. The goodness of a filter is best based on
visual inspection of the results. Also note that it depends on the subsequent steps in the analysis
too. For instance, a good filter for peak detection may be one which reduces noise to 1% of the
signal. The same filter may not be good for differentiation, because the noise in the derivative is
still to high. Filters for differentiation typically need a lower cut-off frequency.

The GCV software includes two optimization methods to select a p-value objectively. The first
requires an estimate of the magnitude of the noise, the second (the generalized cross-validation
criterion) tries to make an estimate of the noise. The latter method tends not to work well for
choosing an optimal filter for differentiation (it tends to smooth not enough), but your mileage
may vary.
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NOTE: if you suggestions for additions or revisions to this document, please contact me at
bogert@acs.ucalgary.ca


