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INTRODUCTION 
Musculoskeletal conditions are the most common causes of 
chronic disability in the world. The most common non-
medication treatment for musculoskeletal disorders and 
stroke is rehabilitation. For patients, rehabilitation is a 
tedious chore that involves many months of treatment, 
resulting in low compliance. Rehabilitation regimens 
combine home-based exercises with therapist-monitored 
sessions; during the latter, the therapist assesses the patient’s 
capabilities and adjusts the exercise tasks accordingly.  

Previous research on upper body rehabilitation has shown 
that positive functional outcomes are achieved from 
programs that emphasize task-oriented, repetitive training 
exercises combined with biofeedback [5,7]. Thus, virtual 
reality (VR) rehabilitation systems have been developed that 
can repetitively simulate these task-oriented training 
exercises [3,6]. VR rehabilitation has been shown to be 
successful for improving upper body function in stroke 
patients, most likely because the interesting and engaging 
virtual tasks encourage increased repetition [6]. Furthermore, 
biofeedback has been shown to improve the learning rate 
during rehabilitation [5]. Finally, some VR rehabilitation 
programs have been designed to be used without the 
supervision of a physiotherapist [5].  

However, VR rehabilitation must be able to adapt to the 
patients’ changing capabilities. A previous study 
demonstrated that subjects trained with an adaptive VR 
rehabilitation system had improved upper body functionality 
when compared to subjects trained with conventional 
rehabilitation [4]. Unfortunately, these types of adaptive 
systems are cumbersome and expensive, and cannot be used 
outside of a medical or research facility.  

The overall goal of this study was to create an adaptive 
home-use rehabilitation system. The specific goals were to 
collect data from the subject in real-time using simple and 
portable sensors, and then to create a customized exercise 
task for each subject by using the subject’s previously 
collected data to adapt a standard exercise task.  

METHODS 

A. Description of the Rehabilitation System 
A Microsoft Kinect

TM
 sensor and an electromyograph 

(EMG) system were combined with custom software written 
in C++ in order to collect data from the subject in real time. 
Data was obtained from the Kinect

TM
 using the official 

Microsoft software development kit (Kinect
TM

 SDK, version 
1.6, Microsoft, Redmond, WA, USA).  The 3D joint position 
data (mediolateral, anteroposterior, and vertical axes) for 20 

joints per subject were acquired at 30 Hz. Simultaneously, a 
wireless surface EMG system (Cometa, Milan, Italy) was 
used to collect electrical signals of the subject’s biceps and 
triceps muscles at 1000 Hz. The linear envelopes of the EMG 
signals were processed in real-time using a previously 
described method (bandpass filter = 10 Hz - 500 Hz; lowpass 
filter = 30 Hz) [1].  The EMG data were normalized to the 
subject’s maximum voluntary contraction (% MVC).  

A 3D visual environment (VE) previously created using 

custom software in C++ and OpenGL [2] was modified to 

display the data from the sensors as well as the exercise 

task. The VE consisted of a virtual room (Figure 1, part A) 

where the joint center data of the subject was displayed as a 

skeleton figure. Separate from the VE, an additional window 

displayed the color video data from the Kinect
TM

 as well as 

the real-time EMG data (Figure 1, part B).  

 
Figure 1: Visual environment: A) virtual room, B) color 

video and EMG data 

B. Subject Testing 
Eleven young, healthy subjects (age: 30.0 years ± 4.3, height: 
169.7 cm ± 9.1, male = 5) with no history of upper body 
impairment volunteered to participate in this study. The 
subjects wore close-fitting short sleeve shirts to allow for the 
placement of two EMG electrodes, one on the biceps and one 
on the lateral head of the triceps. The exercise tasks for this 
study consisted of different types of visual follow tasks. For 
these tasks, a moving sphere was displayed in the VE (Figure 
1) and the subject used his right hand to follow the sphere as 
closely as possible as it moved around the VE in a repeating 
cyclical 2D pattern for a total of 3 minutes. Biofeedback was 
used to aid the subject’s accuracy; the sphere changed color 
and the volume of music playing in the background increased 
as the subject’s hand approached the center of the sphere. In 
terms of data, the 3D position of the sphere, the 3D position 
of the subject’s hand, and the subject’s biceps and triceps 
EMG signals were recorded simultaneously during the 
exercise tasks.  



The protocol for creating the customized exercise tasks, 
described previously by Barzilay and Wolf [2], consisted of 
generating a neural network that represented an inverse 
model of the subject. The subject was first asked to complete 
a training exercise task, which was either a vertical double 
figure 8 pattern [2] or a vertical half figure 8 pattern. The 
subject’s performance during this training exercise (in terms 
of the 3D position of the hand, the 3D velocity of the hand, 
and the biceps and triceps EMG signals) was used as inputs 
to train the neural network; the 3D position and 3D velocity 
of the sphere were used as targets to train the neural network 
[2]. After the neural network was trained, it was used to 
simulate the subject’s expected performance during a related 
exercise task, either a full horizontal figure 8 pattern or half 
of a horizontal double figure 8 pattern. Averaged EMG data 
from 10 healthy subjects were used as the additional inputs to 
the neural network [2]. The subject then completed both the 
exercise task output from the neural network (custom), as 
well as the unmodified original task used as input to the 
neural network (standard). Each subject completed 2 full sets 
for both types of training exercises. Every set consisting of a 
training task, a custom exercise, and a standard exercise 
(total of 12 exercise tasks per subject).  

Analysis of the data was completed in MATLAB R2012a 
(Mathworks, Natick, MA, USA). For the custom and 
standard exercise tasks, the root-mean-square error (RMSE) 
was calculated between the subject’s hand and the sphere for 
both position and velocity. For the EMG signals, the peak 
value and the area under the linear envelope were calculated. 
Finally, the data from the subjects were merged, and paired t-
tests (two-tailed, α=0.05) were conducted between the 
standard exercise data and the corresponding custom exercise 
data in the set for the aforementioned variables.  

RESULTS AND DISCUSSION 
The first specific goal for this research was to collect data 
from a subject in real-time using simple and portable sensors. 
During the subject testing, the Kinect

TM
 sensor measured the 

3D position and 3D velocity of the subject’s hand at 30Hz. 
Furthermore, the wireless surface EMG system measured the 
subject’s biceps and triceps muscles and calculated the linear 
envelope of each signal at 1000Hz. Both these sensors are 
easily transportable and simple to use after minimal training. 
Thus, it is feasible to use the entire rehabilitation system in a 
home setting, as the only additional requirements are a 
computer and a display device like a television. 

The second specific goal of the system was to create a 
customized exercise task for each subject. A neural network 
was created using the subject’s training exercise data and was 
then used to modify a standard exercise task into a custom 
exercise task. A comparison of these two tasks (standard and 
custom) is presented in Table 1 below. There were no 
significant differences in the EMG variables. For both 
training exercises, the subjects had greater RMSE for the 
position and the velocity variables during the custom tasks 
(as compared to the standard tasks). In other words, during 
the custom task, their kinematic performance was worse in 
terms of accuracy to the instructed task.  

These results show that the subjects were less able to 
replicate the custom task, suggesting that the custom task 
was more difficult to complete. This may be a result of the 
unconstrained nature of the neural network used to create the 
custom task. No output constraints were placed on the neural 
network, so the path of the custom task was somewhat 
squiggly and loopy; in contrast, the standard task was always 
a simple path. Consequently, the subjects were continually 
reacting to the unpredictable trajectory of the moving sphere 
during the custom task, but were able to anticipate the 
trajectory of the standard task, thereby making the standard 
task easier to complete. Adding constraints to the neural 
network could reduce the variability of the custom exercise.  

CONCLUSIONS 
This paper presented a feasible and functional adaptive 
home-use rehabilitation system for the upper body. The 
results indicate that the customized exercise tasks created by 
the system were more difficult to complete.    
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Table 1: Averages and standard deviations for the kinematic and EMG variables by training exercise

 
Kinematics Biceps EMG Triceps EMG 

Training 

Exercise 

Output 

Exercise 
Value 

Position 

RMSE (cm) 

Velocity RMSE 

(cm/sec) 

Area 

(%MVC) 

Peak 

(%MVC) 

Area 

(%MVC) 

Peak 

(%MVC) 
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 Standard 
Average 5.71* 5.21** 762.01 25.99 849.04 25.40 

SD 1.1 0.8 488.4 18.6 516.1 17.4 

Custom 
Average 6.18* 6.72** 759.91 25.93 846.75 25.41 

SD 1.0 1.2 485.0 18.7 513.3 17.5 
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P
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 Standard 
Average 5.87** 4.92** 779.81 24.43 847.93 28.65 

SD 1.2 0.8 512.9 17.0 577.8 25.6 

Custom 
Average 6.39** 6.92** 778.33 24.41 844.40 28.73 

SD 1.3 0.9 511.1 17.0 596.0 25.6 

Statistically significant differences by training exercise between standard and custom: *p<0.05, **p<0.001 


