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INTRODUCTION 
Recently a new computational model, based on the 
thermodynamically constrained averaging theory (TCAT), 
has been proposed to predict tumor initiation and 
proliferation [1, 2]. A similar mathematical approach is 
proposed here to model foot tissue mechanics and diabetic 
ulcer formation. The common aspects at continuum level 
between these two computational models are: the 
macroscopic balance equations governing tissue mechanics, 
fluid flow and diffusion of chemicals, and some of the 
constitutive equations. 
 
THE TCAT PROCEDURE 
TCAT [3] is a framework recently established for the 
analysis of multiphase systems, which is consistent over 
multiple scales. It provides a rigorous yet flexible method 
for developing multiphase, continuum models at any scale 
of interest. TCAT uses averaging theorems to formally and 
consistently convert micro-scale equations to the larger 
macro-scale. These averaging theorems convert averages of 
micro-scale derivatives into derivatives of macro-scale 
averages and share some features of the well-known 
transport and divergence theorems.  

 
Figure 1: The multiphase system (on the right) and its 
relation with a macroscopic point (on the left). 
 
Hence, the TCAT procedure explicitly defines larger scale 
variables in terms of smaller scale ones. The macroscale 
depends on the concept of the representative elementary 
volume (REV) (see Figure 1). REV is an averaging volume 
that can be centered at each point in the system and has to be 
large enough to include all present phases so that values of 
averages are independent of its size. The volume must also 

be much smaller than the length scale of the entire system 
(known as the megascale), so that quantities such as 
gradients are meaningful. 
 
MATHEMATICAL MODEL 
The foot tissue is modeled as an elastic porous medium in 
large strain regime completely filled by a fluid phase. The 
tissue cells and their extracellular matrix form the solid 
skeleton s with pores saturated by the interstitial fluid f. 
Indeed, the sum of the volume fractions for the two phases 
has to be unit 
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Being the pores fully saturated, the volume fraction of the 
interstitial fluid, εf, is equal to the porosity of the medium, 
which is denoted here as ε.  
Transport of nutrients and possible drugs delivery within the 
microvasculature are also considered by means of the 
introduction of an effective diffusion coefficient which is 
estimated from the real degree of vascularisation of the zone 
of interest. The tissue may become necrotic depending on 
the stress level and on vasculopathy; thus it comprises a 
healthy fraction (Hs) and a necrotic one (Ns). Assuming that 
there is no diffusion of either necrotic and living cells the 
mass conservation equations of the healthy and necrotic 
fractions of the tissue read respectively 
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where Hs  is the mass fraction of the healthy tissue cells 
(and associated ECM), Ns  is the mass fraction of the 
necrotic tissue cells (and associated ECM), ρs is the density 
of the tissue and vs is the velocity of the solid phase.  The 
term s Nsr  is the cells’ death rate and represents an intra-

phase exchange of mass (i.e. within the phase s). 
Ns f

M
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rate of dissolution of the necrotic cells and is an inter-phase 
exchange of mass (from the phase s to the phase f). 
Summing equations (2) and (3) gives the mass balance 
equation of the solid phase 
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From TCAT, the mass conservation equation of the 
chemical species i in the interstitial fluid (phase f) reads 
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where if  is the mass fraction of the species i dispersed 

within the phase f, 
is if

M


is an inter-phase exchange term 
(mass of the chemical species i consumed or relaxed by the 
tissue) and ifu  is the diffusive velocity of the species i. 
Summing equation (5) over all species gives the mass 
balance equation of the interstitial fluid 

   
f f s f

f f f M
t

 
 


 


v  (6) 

It is assumed that the mass of chemical substances 
consumed by the cells is equal to that produced due to their 
metabolism, therefore the tissue does not growth. However 
it may dissolve due to cells necrosis. Hence the source term 
in equation (6) reads 
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From TCAT the relative velocities of the interstitial fluid 
phase f reads [2] 
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where fsk  and f  are the intrinsic permeability tensor and 
the dynamic viscosity respectively, and pf is the interstitial 
fluid pressure (IFP). IFP increases instantaneously when the 
foot comes into contact with the ground, then, after a while, 
the stress is transferred onto the solid matrix following a 

well-known mechanism which in geomechanics is called 
consolidation.  
With respect to the effective stress principle [4], the linear 
momentum balance of the solid phase in a rate form is  
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where α is the Biot’s coefficient and s
efft  is the effective 

stress in the sense of porous media mechanics. 

NUMERICAL SOLUTION  
To obtain a solvable system of equations, some constitutive 
equations are introduced in the general governing equations  
of the previous paragraph. These equations regulate cells’ 
metabolism, necrosis, diffusion of chemicals species within 
the interstitial fluid and tissue mechanics. More in detail, the 
foot tissue is modeled as an elastic porous medium in large 
strain regime. The assumption of relatively slow velocities 
allow to neglect inertial forces and simplify the 
mathematical formulation; in other words the problem is 
considered quasi-static. Using an adequate time step the 
numerical results reproduce exhaustively the experimental 
ones. However in the next future, numerical test will be 
performed to investigate more in detail the dynamic 
behavior of the system and the influence of the inertial 
forces on the computed solution. The assumed boundary 
conditions are consistent with experimental measurements 
performed at the mega level: in-vivo kinematics, kinetics 
and magnetic resonance are the input data of the model [5]. 
The primary variables of the model are: the IFP, pf, the 
velocity vector of the solid phase vs, and the mass fraction of 
oxygen, Of . The latter together with the stress in the tissue 
regulates cells’ metabolism and the occurrence of ulceration. 
With respect to these primary variables the governing 
equations are discretized in space by the finite element 
method [4], in time domain using the θ-Wilson method and 
then solved numerically. 
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