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SUMMARY 

The clinical impact of neuromusculoskeletal models is 

limited by the difficulty of calibrating musculotendon and 

moment arm parameter values to patient movement data. To 

address this limitation, we created a numerical technique 

called “surrogate moment estimation” (SME) that predicts 

net joint moments at the hip, knee, and ankle directly from 

electromyographic (EMG) and kinematic data. SME uses a 

large quantity of redundant motion trials to calibrate a 

polynomial response surface that represents a muscle’s 

moment generating properties. The surrogate model is able 

to predict sagittal plane hip, knee, and ankle moments 

accurately during walking and produces physiologically 

consistent muscle contributions to net joint moments. This 

modeling technique could be used to drive neuromusculo-

skeletal walking models without calibrating musculotendon 

and moment arm parameter values for individual muscles. 

 

INTRODUCTION 

Computer modeling of the human neuromusculoskeletal 

system has the potential to improve the diagnosis and 

treatment of movement related disorders such as stroke and 

osteoarthritis. To be used for this purpose, such models need 

to be customized to the anatomic and neurological 

characteristics of individual patients. Current techniques for 

customizing models to patient movement data are often 

arduous and unable to calibrate weakly observable model 

parameter values, such as those related to muscle moment 

arms and muscle force generation [1]. 

 

This study presents surrogate moment estimation (SME), a 

novel method for estimating net joint moments directly from 

a patient’s processed EMG and kinematic data for periodic 

activities such as walking [2]. SME uses a polynomial 

response surface surrogate model in place of explicit Hill-

type muscle models with geometric lines of action. 

Parameters of SME models can be easily determined using 

optimization and linearize algebra without the need for MRI 

or other imaging data. 

 

METHODS 

EMG (Motion Lab Systems, Baton Rouge, LA), video 

motion (Vicon Corp., Oxford, UK), and ground reaction 

force data were collected simultaneously from a single 

healthy male subject performing normal walking at 1.2 m/s 

on an instrumented split-belt treadmill (Bertec Corp., 

Columbus, OH). Institutional review board approval was 

obtained, and the subject gave informed consent. One 

hundred fifty trials of normal walking were selected for 

model calibration, and fifty trials were withheld for model 

evaluation. Surface EMG signals were collected from 

thirteen muscles: Gluteus Maximus, Gluteus Medius, Rectus 

Femoris, Vastus Medialis, Vastus Lateralis, Adductor 

Magnus, Biceps Femoris, Semitendinosus, Semimembran-

osus, Tibialis Anterior, Medial and Lateral Gastrocnemius, 

and Soleus. 

 

EMG data were processed according to previously published 

methods [3]. EMG signals were high pass filtered at 30 Hz, 

demeaned, positively rectified, and low pass filtered at 6 Hz. 

Each processed EMG signal was normalized to its 

maximum value over all walkings trials analyzed. 

 

Hip, knee, and ankle joint moments and kinematics were 

calculated from marker motion and ground reaction force 

data using a 27 degree-of-freedom full-body inverse 

dynamics walking model. Mass properties and joint axis 

locations in the model were calibrated to the subject’s video 

motion and ground reaction data [4]. For each gait trial, an 

inverse kinematics analysis was performed to determine 

joint angles during gait. The calibrated inverse dynamics 

model was used to calculate sagittal plane moments at the 

hip, knee, and ankle at 101 normalized time points in the 

gait cycle. For consistency with the EMG data, net joint 

moments from inverse dynamics were filtered at 6 Hz with a 

4
th

 order zero phase lag Butterworth filter [3]. 

 

Muscle activations were calculated from the processed EMG 

signals using a finite difference approximation of a linear 

first order differential equation representing EMG-to-

activation dynamics [5]: 
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where   is activation,   is the EMG value,           

               ,      and        are the muscles’ 

activation and deactivation time constants,   is time in the 



gait cycle. We solved this equation over an entire gait cycle 

by discretizing it using a central difference approximation: 
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where    represents the time step and    and    are the EMG 

and activation values at a discretized time point in the gait 

cycle. Equation (2) was applied to each time point i in the 

gait cycle, and the resulting linear system of equations was 

solved for all    values. A correction for activation 

nonlinearities during periods of low excitation was also 

included [6]. Activation parameter values were determined 

by an optimization that maximized moment prediction 

accuracy while minimizing non-physiological muscle 

moment contributions (e.g., a flexor muscle should only 

contribute a flexor moment). The optimization also 

determined a fixed time delay for each muscle of 0 to 50 ms 

and included an EMG scaling parameter since maximum 

EMG is difficult to determine experimentally. 

 

Numerous gait trials were used to solve a linear system of 

equations that implicitly accounted for muscle moment arms 

and muscle force-length-velocity properties. For each 

muscle, a linearized Hill-type muscle model was used to 

approximate sagittal plane EMG-to-moment relationships at 

the hip, knee, and ankle [7]: 
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where  (   ̇) represents the net joint moment,   and  ̇ are 

normalized joint angles and velocities,   is the number of 

muscles that contribute to the moment, and     is the 

activation of muscle i. In this model,     is an offset term, 

    and     represent muscle force-length properties,     

represents muscle force-velocity properties, and     

represents a force-length-velocity interaction. For bi-

articular muscles, parameters         were added to 

represent the effects of the respective neighboring joints on 

the muscle’s force-length-velocity properties. Coefficients 

in this model were first solved separately for each joint via 

linear least squares (5 parameter values for 13 muscles 

determined using 150 gait trials). Then Matlab’s nonlinear 

least squares optimizer modified these initial parameter 

values to constrain each muscle to produce moments only in 

physiological directions. Parameters for activation dynamics 

were held constant for each muscle. 

 

We evaluated our technique using two measures - accuracy 

of total moment predictions and physiological consistency 

of individual muscle moment contributions. First, we 

calibrated our model using 150 trials of normal gait. Then 

we used the calibrated parameter values to predict the joint 

moments and individual muscle moment contributions for 

the 50 test trials. Median RMS errors and R
2
 values for the 

net joint moment predictions were calculated, and individual 

muscle contributions to net joint moments were evaluated. 

 

RESULTS AND DISCUSSION 
For the 50 test trials, predicted hip, knee, and ankle 

moments were highly accurate (Fig. 1 top), and individual 

muscle moments were generated almost exclusively in 

physiological directions (Fig. 1 bottom). The hip, knee, and 

ankle predictions had median R
2
 values of 0.95, 0.97, and 

0.97, respectively, and RMS errors of 0.53, 0.21, and 0.38 

%BWHt. The individual muscle moment contributions for 

the ankle and knee are nearly perfectly physiological, with 

only a few muscles producing small moments in non-

physiological directions. At the hip, Rectus Femoris and 

Adductor Magnus produced moments that were probably 

too large for these muscles, likely due to the omission of 

Illiapsoas. 
 

 
Figure 1: Ensemble average moment predictions compared 

with experimental moments (top) and individual muscle 

contributions to net moments (bottom) 

 

While SME was able to produce accurate muscle moments 

with physiological individual muscle contributions, several 

important limitations exist. SME is limited primarily by the 

need for a large number of motion trials to calibrate model 

parameter values. Additionally, SME may only work for 

periodic motions such as gait. We did not collect EMG data 

for several important muscles, including Vastus Intermedius 

and Illiopsoas. Inclusion of more muscles in our model will 

likely improve the accuracy of our predictions.  

 

CONCLUSIONS 

SME may prove to be a valuable tool for dynamic 

simulation of periodic motions. Only a small number of 

coefficients are needed for each muscle to model moment 

generation from processed EMG data. The method negates 

the need for explicit geometric musculoskeletal models 

incorporating individual musculotendon models whose 

parameter values are difficult if not impossible to calibrate 

accurately for individual patients. Since moments are 

calculated quickly and easily with SME, it may be possible 

to incorporate SME into predictive gait optimizations to 

determine optimal walking patterns for patients with neural 

impairments. 
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