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SUMMARY 

In functional principal component analysis (fPCA) a 

threshold is chosen to define the number of retained 

principal components, which corresponds to the amount of 

preserved information. A variety of thresholds have been 

used in previous studies and the chosen threshold is often 

not evaluated. The aim of this study is to identify the 

optimal threshold that preserves the information needed to 

describe a dependent variable accurately. To find an optimal 

threshold, a neural network was used to predict jump height 

from vertical ground reaction force curve measures 

generated by a fPCA at different thresholds. The findings 

indicate that a threshold from 99% to 99.9% (6-11principal 

components) is optimal for describing jump height, as these 

thresholds generated significantly lower jump height 

prediction errors than other thresholds. 

INTRODUCTION 
The majority of studies in biomechanics have relied almost 

exclusively on a discrete point analysis that examines 

discrete measures (e.g. maximums, minimums, overall 

duration). Significant limitations in discrete point analysis 

are the pre-selection of parameters and the possible loss of 

extremely important information [1,2,3]. In recent years, 

functional principal component analysis (fPCA) has been 

proposed to avoid these limitations by examining continuous 

waveforms [4,5]. fPCA reduces the dimensionality of a data 

set by generating a number of principal components that 

preserve the information needed to fully describe a data set 

[6]. When applying fPCA, a threshold (x% of the total 

variance in the data) is chosen by the user, which defines the 

amount of information preserved and determines the number 

of retained principal components. A scree plot
1
 can be used 

to estimate the optimal number of principal components. 

While a variety of thresholds are used, a 95% threshold 

appears to be the most frequent in recent biomechanical 

studies [3,7,8]. Principal components beyond the threshold 

of 95% are often discarded as they have very little influence 

on the data [1]. However, the captured influence of principal 

components in this context is assessed only in relation to the 

data rather than a dependent variable, which is extremely 

important in biomechanical analyses. To date, no bio-
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  A scree plot is a line that shows the ratio of the influence 

of a principal component on the data’s total variance 

(Figure 1). 

mechanical studies appear to have examined if there is an 

optimal threshold that retains sufficient information to best 

describe a dependent variable. The aim of this study is to: 

(a) identify the optimal threshold for jump height prediction 

and, (b) test if a principal component beyond the 95% 

threshold can have significant influence on the dependent 

variable. 

METHOD 
A feed-forward back-propagation neural network

2
 with a 

single hidden layer containing 20 hidden units was used to 

identify the optimal threshold for inferring a dependent 

variable from an input matrix. A neural network was used to 

access the optimal fPCA threshold, as it is able to find any 

existing input-target relationship [9].  

Dependent variable: The jump height of a counter-

movement jump (CMJ) was chosen as the dependent 

variable because it is fully captured by vertical ground 

reaction force (force) generated during the propulsion phase 

of the jump. Force curves of 42 athletes were captured 

during CMJs. All athletes were free from any injury at the 

time of data capturing and were experienced in performing a 

CMJ. The University Ethics Committee approved the study 

and all subjects were informed of any risk and signed an 

informed consent form before participation. Prior to data 

collection, every subject completed a standard warm-up 

routine. The subjects performed 15 maximum effort CMJs 

without an arm swing, standing with each foot on a force 

platform and rested for 30 seconds between the trials. Two 

force plates (BP-600900, AMTI, MA, USA), each with a 

frequency of 250Hz, recorded the produced force. Jump 

height was calculated by the impulse momentum 

relationship. Based on jump height, the best jump 

performance of each subject was used for data analysis. All 

curves were normalized to body mass (N/BM) and only the 

propulsion phases were used for analysis. 

Input matrix: fPCA [5] was performed to generate 

principal components for a given threshold using the 

captured force curves. fPCA was used because it does not 

require a linear time normalization, which can alter the data 

[2]. The generated principal components were VARIMAX 

rotated to optimize their interpretability [5,6]. Principal 

component scores were calculated to reflect the degree to 
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 MATLAB neural network toolbox implementation 



which a subject is affected by a principal component over 

the whole function [5]. 

The fPCA threshold can be seen as a parameter of the 

jump height’s prediction model. In machine learning the 

optimal value for such parameters is typically chosen using 

cross-validation [10]. A leave-one-out
3
 cross validation was 

performed due to the relatively small sample size. The 

network was trained using the principal component scores as 

input data and jump heights as target data. After training, the 

principal component scores of the test sample were input 

into the network to predict jump height. The absolute 

difference between predicted and actual jump height 

(absolute error) was calculated to measure the accuracy of 

the network, and averaged over each round of cross 

validation. Cross validation was performed for fPCA 

thresholds from 75–100% by increasing the number of 

retained principal components. The entire process was 

repeated 25 times using different random initial weights in 

the network to achieve a repeatable measure of the expected 

accuracy. 

A repeated measurement ANOVA (Bonferroni 

adjustment for multiple comparisons) was performed to 

examine the effect of the threshold on the absolute error of 

the network. The significance level was set at α = 0.05. Data 

processing was performed in MATLAB and statistical 

analyses were performed using SPSS 20. 

RESULTS 

Visual inspection shows clear differences across the 

generated absolute errors (Figure 1). Thresholds smaller 

than 90% (up to 2 PCs) show the largest magnitude and 

spread in absolute errors, thresholds smaller than 99% (up to 

5 PCs) and greater than 99.9% (more than 11 PCs) show 

moderate absolute errors and a wide spread of the absolute 

errors, while thresholds between 99% (from 6 PCs) to 

99.9% (to 10 PCs) show the smallest magnitude and 

variation in absolute errors. 

The statistical analysis found significantly lower  

(p < 0.001) absolute errors for the thresholds between 99% 

and 99.9% compared to other thresholds. 

 

Figure 1:  Absolute error (cross validated) of the used 

network in predicting jump height from principal 

component scores. Each point is the average 

accuracy from a complete run of cross-validation. 
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  Leave-one-out cross-validation uses one sample as test 

data and retains the other samples as training data. This 

process is repeated until each sample is used once as the 

test data. 

DISCUSSION 
The visual and statistical findings show that a fPCA 

threshold between 99-99.5% (optimal threshold) is most 

effective in describing jump height, generating significantly 

lower absolute error than other thresholds. Thresholds below 

the optimal threshold generated significantly higher absolute 

errors, indicating that the performed fPCA did not preserve 

enough information for the neural network to find the 

relationship between input data and target data accurately. 

Thresholds above the optimal threshold generated 

significantly higher absolute errors than the optimal 

threshold. Thresholds above the optimal threshold preserved 

unnecessary information (such as noise) that decreased the 

power of the input data to explain the target data. Further, 

visual inspection of the generated absolute error shows 

higher variation in absolute error below or above the optimal 

threshold, highlighting again either a lack of information or 

too much information retained.  

The findings indicate that principal components 

beyond the frequently used threshold of 95% should be 

considered in experiments that use a fPCA threshold without 

performing cross validation. This is because principal 

components beyond the threshold of 95% can have a large 

influence on a dependent variable [e.g. 7]. Principal 

components beyond the threshold of 95% decreased the 

absolute error significantly and reduced the variation in 

absolute error in this experiment. However, principal 

components beyond a threshold of 99.9% significantly 

increase absolute error in this experiment and should be 

discarded. 

In addition, the number of principal components 

suggested by the scree plot (4 PCs) differs from the optimal 

number identified by the network. The suggestion by the 

scree plot underestimates the number of principal 

component needed to describe jump height. 

CONCLUSIONS 

An optimal fPCA threshold to describe a dependent variable 

(jump height) accurately is within 99-99.9%. A scree plot 

should not be used for biomechanical purposes to choose the 

number of principal components, because principal 

components with a small influence on the data can have a 

large influence on a dependent variable.  
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