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SUMMARY
Motor control research has long attempted to unaeds
how the central nervous system coordinates therscbf a

(MG), soleus (SO), vastii (VI), rectus femoris (RBjceps
femoris long head (BFLh), gluteus medius (GMEd) and
gluteus maximus (GMax). NNMF based decompositidn [6

highly redundant muscle set during movements. As aof EMG signals from 7 gait cycles each at the twadking

potential answer, researchers have proposed thtepge of
a modular control architecture whereby multiple oles
can be simultaneously co-activated by a singlesqire
control pattern known as a module or synergy (3¢éof a
detailed review). Individual contributions from ifi@
synergies can then be scaled in magnitude andrlynea
summed up (termed synergy re-combination) to yidlel
resultant control signal (termed muscle excitatiavt)ich
then causes muscle contraction [2]. By merely chanthe
temporal scaling patterns for recombination, a bisetl of
synergies can thus generate excitation patternadimating
a family of movements (e.qg., resisting posturatyrdations
in various directions [3]).

Thus muscle synergies may represent fundamentaklneu
control strategies responsible for actuating a Hanaf
movements. While methods such as non-negative xmatri
factorization (NNMF) can identify a set of subjegtecific
muscle synergies from EMG collected for a variety o
movements, it is extremely difficult to conversetientify
the entire family of movements which a given syyesgt
can actuate. Computer simulations using musculetiel
models may however verify whether a specific mowame
belongs to that family of realizable movements. this
abstract we describe a novel simulation approagkldped
for that purpose and demonstrate how we can vetifgther
muscle synergies for healthy human walking are lokepaf
reproducing experimentally observed gait mechainica
model. Such a simulation method could have appdinatin
the rehabilitation of movement disorders. The peoblwas
first formulated as an optimal control problem (Q@#ich
was then solved by direct collocation [4,5], a nuoa
method known for its computational speed and fléixgtof
OCP formulation.

METHODS

The kinematics, kinetics and EMG signals of a Hwalt
subject walking at 0.7 and 1.7 thavere recorded in a
motion capture laboratory. EMG signals were onlyorded
for 8 muscle groups on the right side of the loaremity,
namely the tibialis anterior (TA), medial gastrognes

speeds yielded four muscle synergies (Figure 1)inQu
simulation, only excitations for these 8 muscleup® were
dictated by synergy recombination while other mescl
excitations (termed ‘free muscles/excitations’) Idoassume
arbitrary patterns.
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Figure 1: Contributions of the 4 muscle synergies (row-
wise) towards excitations in 8 muscles. During
recombination, the contributions from a synergy scaled
by a synergy-specific, time-varying activation dagént
and scaled contributions from each synergy are seanup

to yield the respective muscle excitations.
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The ‘gait 2354’ model from OpenSIM [7] first undesnt
scaling, inverse kinematics and inverse dynamid (sing
the experimental data. An OCP then sought valuethef
time-varying synergy activations and free excitasiavhich
as control inputs to a forward integration of theiscle
model, would reproduce experimental ID joint monseint
the musculoskeletal model (similar in principle the
forward-inverse model in [8]). Direct collocationaw used
to convert the OCP into a numerical optimizationkdem
whose cost function simultaneously minimized errors
between simulated and ID moments along with adtvat
in the free muscles. The optimization was solvethgis
SNOPT [9].



Due to approximations involved in direct collocatio
dynamic consistency of the OCP solution was fiestified
by actually integrating the muscle model with mlitstates
and control signals from direct collocation. Ifas between
the resulting joint moments and those from ID were, the
synergies could be deemed capable of reproducing
mechanics in the model. Additionally we comparedesgy
driven muscle excitations with the respective meisdEMG
(which synergies were derived from).

RESULTSAND DISCUSSION

Direct collocation was successful in solving the FO@nd
computing feasible control inputs for the modem8liated
joint moments hereby refer to the joint momentdpied in
the model during the forward integration test. Mearors
and correlation coefficients calculated betweenutited
and ID joint moments (Figure 2) over all degreefr@édom
were 4.88 Nm and 0.98 respectively. The low eriamg
high correlations verified that the experimentafigrived

The mean correlation coefficient between simulated
excitations and EMG (Figure 3) over all synergyvedn
muscles was 0.294+0.13). Thus low correlations were
observed despite synergies being capable of repimgiu
EMG signals if needed (from NNMF). Incorrect model

ga parameters could be the reason behind this obsmmvétor

example, differences in EMG-excitation peaks coblel
caused by incorrect activation/deactivation cortstgh0].
Such inaccuracies probably necessitated simulaiedrgy
activation profiles to differ from the NNMF valueso that
experimental joint moments could be reproduced he
model. The presence of free muscles especiallyeathtp
where surface EMG for most muscles is evasive cbaice
also influenced the excitations of synergy drivarsaotes.

—

CONCLUSION

While earlier studies [11] have developed simulaiaising
muscle synergies as inputs, the cost of computiegtime
varying activation coefficient profiles restrictetiem to

muscle synergies were indeed capable of reproducingsimulating movements similar to ones which the syies

healthy gait mechanics in the musculoskeletal model
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Figure 2: Comparing ID and simulated joint moments (from
forward integration of the DC solution) for the
flexion/extension degrees of freedom at 3 joints Xogait
cycle at 1.7 m& All moments specified in Nm.
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Figure 3: Comparing simulated excitations from direct

collocation with experimental EMG for one gait ayélt 1.7

ms®.

were derived from using NNMF. The methodology
proposed in this study overcomes this cost by usdinect
collocation instead of simulated annealing that wasd
earlier. Thus for example, one could verify whethvatking
synergies can also actuate jumping, or whetherrekest
subject’'s walking synergies can also actuate heajit by
merely varying the activation profile. This couldtentially

be useful in planning rehabilitation from movement
disorders. Synergies computed from a stroke subjEMG
could be used as control inputs to simulate healihit
mechanics whereby identifying compensatory muscle
coordination strategies that would be utilizing tsieoke
subject’s inherent neural control strategies.
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