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SUMMARY 
Motor control research has long attempted to understand 
how the central nervous system coordinates the actions of a 
highly redundant muscle set during movements. As a 
potential answer, researchers have proposed the existence of 
a modular control architecture whereby multiple muscles 
can be simultaneously co-activated by a single, preset 
control pattern known as a module or synergy (See [1] for a 
detailed review). Individual contributions from finite 
synergies can then be scaled in magnitude and linearly 
summed up (termed synergy re-combination) to yield the 
resultant control signal (termed muscle excitation) which 
then causes muscle contraction [2]. By merely changing the 
temporal scaling patterns for recombination, a small set of 
synergies can thus generate excitation patterns for actuating 
a family of movements (e.g., resisting postural perturbations 
in various directions [3]).  
  
Thus muscle synergies may represent fundamental neural 
control strategies responsible for actuating a family of 
movements. While methods such as non-negative matrix 
factorization (NNMF) can identify a set of subject-specific 
muscle synergies from EMG collected for a variety of 
movements, it is extremely difficult to conversely identify 
the entire family of movements which a given synergy set 
can actuate. Computer simulations using musculoskeletal 
models may however verify whether a specific movement 
belongs to that family of realizable movements. In this 
abstract we describe a novel simulation approach developed 
for that purpose and demonstrate how we can verify whether 
muscle synergies for healthy human walking are capable of 
reproducing experimentally observed gait mechanics in a 
model. Such a simulation method could have applications in 
the rehabilitation of movement disorders. The problem was 
first formulated as an optimal control problem (OCP) which 
was then solved by direct collocation [4,5], a numerical 
method known for its computational speed and flexibility of 
OCP formulation.   
 
METHODS 
The kinematics, kinetics and EMG signals of a healthy 
subject walking at 0.7 and 1.7 ms-1 were recorded in a 
motion capture laboratory. EMG signals were only recorded 
for 8 muscle groups on the right side of the lower extremity, 
namely the tibialis anterior (TA), medial gastrocnemius 

(MG), soleus (SO), vastii (VI), rectus femoris (RF), biceps 
femoris long head (BFLh), gluteus medius (GMEd) and 
gluteus maximus (GMax). NNMF based decomposition [6] 
of EMG signals from 7 gait cycles each at the two walking 
speeds yielded four muscle synergies (Figure 1). During 
simulation, only excitations for these 8 muscle groups were 
dictated by synergy recombination while other muscle 
excitations (termed ‘free muscles/excitations’) could assume 
arbitrary patterns. 
 

 
Figure 1: Contributions of the 4 muscle synergies (row-
wise) towards excitations in 8 muscles. During 
recombination, the contributions from a synergy are scaled 
by a synergy-specific, time-varying activation coefficient 
and scaled contributions from each synergy are summed up 
to yield the respective muscle excitations. 
 
The ‘gait 2354’ model from OpenSIM [7] first underwent 
scaling, inverse kinematics and inverse dynamics (ID) using 
the experimental data. An OCP then sought values of the 
time-varying synergy activations and free excitations which 
as control inputs to a forward integration of the muscle 
model, would reproduce experimental ID joint moments in 
the musculoskeletal model (similar in principle to the 
forward-inverse model in [8]). Direct collocation was used 
to convert the OCP into a numerical optimization problem 
whose cost function simultaneously minimized errors 
between simulated and ID moments along with activations 
in the free muscles. The optimization was solved using 
SNOPT [9]. 
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Due to approximations involved in direct collocation, 
dynamic consistency of the OCP solution was first verified 
by actually integrating the muscle model with initial states 
and control signals from direct collocation. If errors between 
the resulting joint moments and those from ID were low, the 
synergies could be deemed capable of reproducing gait 
mechanics in the model. Additionally we compared synergy 
driven muscle excitations with the respective muscle’s EMG 
(which synergies were derived from). 
 
RESULTS AND DISCUSSION 
Direct collocation was successful in solving the OCP and 
computing feasible control inputs for the model. Simulated 
joint moments hereby refer to the joint moments produced in 
the model during the forward integration test. Mean errors 
and correlation coefficients calculated between simulated 
and ID joint moments (Figure 2) over all degrees of freedom 
were 4.88 Nm and 0.98 respectively. The low errors and 
high correlations verified that the experimentally derived 
muscle synergies were indeed capable of reproducing 
healthy gait mechanics in the musculoskeletal model.  
 

 
 
Figure 2: Comparing ID and simulated joint moments (from 
forward integration of the DC solution) for the 
flexion/extension degrees of freedom at 3 joints for 1 gait 
cycle at 1.7 ms-1. All moments specified in Nm. 
 

 
Figure 3: Comparing simulated excitations from direct 
collocation with experimental EMG for one gait cycle at 1.7 
ms-1. 
 

The mean correlation coefficient between simulated 
excitations and EMG (Figure 3) over all synergy driven 
muscles was 0.29 (±	0.13). Thus low correlations were 
observed despite synergies being capable of reproducing 
EMG signals if needed (from NNMF). Incorrect model 
parameters could be the reason behind this observation. For 
example, differences in EMG-excitation peaks could be 
caused by incorrect activation/deactivation constants [10]. 
Such inaccuracies probably necessitated simulated synergy 
activation profiles to differ from the NNMF values, so that 
experimental joint moments could be reproduced in the 
model. The presence of free muscles especially at the hip 
where surface EMG for most muscles is evasive could have 
also influenced the excitations of synergy driven muscles. 
 
CONCLUSION 
While earlier studies [11] have developed simulations using 
muscle synergies as inputs, the cost of computing the time 
varying activation coefficient profiles restricted them to 
simulating movements similar to ones which the synergies 
were derived from using NNMF. The methodology 
proposed in this study overcomes this cost by using direct 
collocation instead of simulated annealing that was used 
earlier. Thus for example, one could verify whether walking 
synergies can also actuate jumping, or whether a stroke 
subject’s walking synergies can also actuate healthy gait by 
merely varying the activation profile. This could potentially 
be useful in planning rehabilitation from movement 
disorders. Synergies computed from a stroke subject’s EMG 
could be used as control inputs to simulate healthy gait 
mechanics whereby identifying compensatory muscle 
coordination strategies that would be utilizing the stroke 
subject’s inherent neural control strategies. 
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