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INTRODUCTION
During the last decades, an increasing effort has been put on both
brain tissue modelling and fractional calculus. This mathematical
field provides a very suitable tool for the modelling of viscoelas-
tic materials thanks to its non-local property. A global biome-
chanical model of the brain using fractional-based viscoelasticity
could find applications in neurosurgery and haptic devices design
as well as in car manufacturing to evaluate the possible trauma
due to an impact. To this purpose, it should reproduce the be-
haviour of the brain for several strain-rates.

METHODS
Assuming the incompressibility of the brain, classical hypervis-
coelastic models can be written in the following form:

S = 2Sw − pC−1 (1)

Sw =
∂

∂C

∫ t

0

Jrel(t− τ)
dΦ
dτ

dτ (2)

where S designates the second Piola-Kirchhoff stress tensor, C is
the right Cauchy Green tensor, Jrel stands for a relaxation func-
tion, Φ is a strain-energy density function and p an unknown hy-
drostatic pressure to be determined by the boundary conditions
and the equilibrium equations. If the relaxation function is writ-
ten as a sum of decreasing exponentials, expression (2) can be
written as the linear differential equation (3)

D(m)Sw +
m−1∑
k=0

ckD
(k)Sw = G(C, Ċ, C̈) (3)

G is related to the instantaneous loading.

Although its origin goes back to the end of the 17th century,
it was not before 1920 that the fractional calculus was used in a
physical framework. For years, it has begun to spread in the fields
of soft tissues and polymers modelling. Amongst the existing def-
initions of the fractional derivative, we chose to use Caputo’s one
[1].

The idea is then to replace the ordinary differential equation
by a real-order one. The complete development form = 2 can be
found in [2]. The fractional differential equation in this particular
case writes:

D(α)Sw + bSw = H(C, Ċ, C̈) (4)

where D(α) stands for the derivative of real order α and H is a
linear function of its arguments. The model described by equa-
tion (4) counts 6 parameters. The identification was performed on

simple compression tests data at different strain-rates available in
the literature [3].

RESULTS AND DISCUSSION
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Figure 1: PK2 stress vs natural strain for the unconfined compres-
sion experiment (strain rate = 0.64 10−2s−1). The experimental
data comes from [3]

Figure (1) shows that the model almost perfectly fits the ex-
perimental data. With its 6 parameters, the model has proved to
be accurate with the strain-rate varying over two orders of mag-
nitude. However, numerical simulations have shown that other
kinds of experiments are needed in order to characterize the ma-
terial properties. Compression, relaxation and cyclic tests are cur-
rently carried out at the University of Liege. We use a 3d video
reconstruction system to estimate the deformed geometry of the
samples.
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