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INTRODUCTION
A recent article [1] demonstrates how the number of markers 
required to follow the trajectory of the center of mass (CoM) 
can  be  significantly  reduced.  The  method  is  based  on  a 
model  which  requires  training  data  in  order  to  determine 
parameters of the model before its application. The training 
data  consist  of  marker  trajectories  as  well  as  (known) 
trajectory of the CoM. This paper presents an extension to 
the published method.  The  requirement  of  a  known CoM 
trajectory in the training data is replaced by the requirement 
that the external forces acting on the body are known. One 
important such situation is gravitational (free) fall.  

METHODS
The underlying model of the method is a system of point 
masses, with different masses and positions corresponding to 
markers attached to the moving body. The 3D trajectories of 
the markers are recorded with a motion capture system. The 
center  of  mass  of  the  system  of  point  masses  is  easily 
calculated as the weighted centroid of the different points
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where  we  have  introduced  the  normalized  masses 
mi=M i /M .  Applying  the  method  is  straight  forward, 

once we have determined the normalized masses, and have 
measured the positions  r i of the points. The challenge lies 
in determining an appropriate distribution of mass, i.e. the 
mi s. If the position of the CoM and those of the markers 

are known, we can use equation (1) to determine the mass 
distribution. The positions of the points and the CoM for a 
number of different frames of data gives a system of linear 
equations.  Hence,  we  obtain  the  following  quadratic 
optimization problem with the constraints that the solution is 
a distribution (of mass):

min ∥Am−b∥2

s.t mi≥0, i=1, , n
∑ mi=1

(2)

where m=m1, m2, ,mn is the vector of masses and 
A contains the positions of the n points at N distinct times. 

The  vector b contains  the  corresponding  position  of  the 
CoM. Further details can be found in [1].

To relax the requirement  that  the  position of  the  CoM is 
known, consider gravitational fall with a known direction of 
the acceleration of gravity. From an unknown initial position 
and velocity of the CoM, we then know that the trajectory 
follows a parabolic curve. The idea of the proposed method 
extension  is  to  include  the  unknown  initial  position  and 
velocity into the optimization problem (2), and hence solve 

for  these  at  the  same  time  as  solving  for  the  mass 
distribution.  Note  that  the  trajectory  of  the  CoM  can  be 
written Rt =R0vo t0.5g t 2 ,
where the first two terms contains the unknowns. Hence, the 
criterion to minimize becomes
∥Am−Ro−voT 1−0.5 g T 2∥

2 ,
where  the  vector T 1 contains  the  time  intervals  from  the 
initial time to that of each of the frames of data, and  T 2
contains the same times, squared.

In  a  pilot  study,  a  male  gymnastics  instructor  performed 
jumps and somersaults on a trampoline. Motion capture data 
from 20 markers on the body were recorded at 150Hz using 
seven  cameras  (ProReflex,  Qualisys  AB,  Gothenburg, 
Sweden). The duration of the flight phases were ca 1.2 s. 

RESULTS AND DISCUSSION
Figure  1  shows  good  correspondence  between  the  model 
output and the parabolic curve with estimated initial values.

Figure  1:   Correspondence  between  model  CoM  and 
parabolic path of CoM in the sagittal plane for three jumps. 

The method shows promising results in a pilot study. Further 
studies will include cross-validation, validation as in [2], and 
addressing the issues of how much movement of the body is 
necessary for model determination, and how well the model 
transfers to activities different from that of the training data. 
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