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INTRODUCTION

Diseases like osteoarthritis and repetitive strain injuries lead to 

changes in coordination that develop slowly over time. It is 

important, but often very difficult, to track the progression of 

these disease processes.  By contrast, changes in movement 

coordination patterns can be easily measured. Our goal is to 

develop methods to track changes in underlying (i.e. “hidden”) 

disease states from easily obtainable biomechanical data.  

METHODS

We borrowed a method for tracking similar hidden damage 

processes in mechanical systems [1,2].  We assume our system 

can be modeled as a hierarchical dynamic system of the form: 
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where x  the observable states of the fast-time-scale system, 

 the hidden slowly-varying dynamics, 0 <  << 1, and ( )

 the parameters in (1a).  If  = 0, ( ) would be constant.  We 

form a topologically valid state space from a single measured 

time series, x(n), using delay embedding (Figure 1A):
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where  is a time delay and d is the embedding dimension [3]. 

Data from the unperturbed system are used to build a locally 

linear model of the system behavior (Figure 1B).  Drift in 

leads to “errors” (Ek) between actual and predicted behavior. 

If our model is good, the model error (Ek
M) will be small and 

Ek k
 the true error or drift in the system dynamics. Ek

can then be used to define the following tracking metric:
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where  the RMS over the index n and F is an appropriate 

filter [2]. Thus, this metric essentially tracks the average error, 

over time, in the predicted fast-time-scale dynamics that is 

introduced by the slow-time-scale dynamics. 

Five healthy subjects walked on a motorized treadmill at their 

self-selected pace. The treadmill incline was increased from 0° 

to +8° slowly over 25 minutes. Kinematic data were recorded 

(Vicon-612, Oxford Metrics, Oxford, UK) continuously at 60 

Hz to obtain sagittal plane hip, knee and ankle angles. These 

joint kinematics defined x(n), the fast-time-scale dynamics. 

Tracking metrics ( ) were computed from joint angle data and 

regression analyses were used to determine how well these 

metrics tracked the “hidden” treadmill incline angle. 

RESULTS AND DISCUSSION 

Basic patterns of joint kinematics changed little across trials. 

Tracking metrics ( ) generally increased with treadmill angle 

(Fig. 2). Regressions yielded adj-r2 of 86% to 98%. Although 

these predictions were not perfect, no attempt was made to 

adjust or alter the original algorithm of [2]. By accounting for 

additional features specific to biological systems (e.g. noise, 

multiple time scales, etc.), better results may be obtained.  

By using a state space formulation, the proposed method 

yields valid measures of slow-time-scale dynamics, without 

the need for “guessing” or for highly detailed first-principles 

models of system dynamics [2].  We anticipate this approach 

can be used to track other “hidden” biological processes like 

muscle fatigue, repetitive strain injury, or disease progression. 
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Figure 2:  Tracking metrics computed from joint kinematic 

data as a function of treadmill angle (85.6% r2 .98.4%).
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Figure 1. A: “Embedding” a 1-dimensional time series in a 

multi-dimensional vector space defining equivalent states of 

the system.  B: Tracking function estimation: ( ) is the 

current trajectory.  ( ) is the corresponding model 

trajectory. Ek is the estimated error, Ek
M is the modeling 

error, and k is the true error, or drift in the system. 
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