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INTRODUCTION

Despite postural control being a multi-degree-of-freedom 

mechanical system with highly redundant actuators [1], recent 

research has demonstrated that postural sway fluctuations like 

fluctuations present in many other biological systems are not 

random but rather have order [2]. Unlike traditional linear 

measures which can mask patterns present during postural 

sway, nonlinear analysis measures can characterize this order. 

Quantifying these patterns could enable the pinpointing of the 

precise contributions of sensory input and the improvement of 

rehabilitation methods [3]. Our aim was to compare the ability 

of traditional linear measures to nonlinear measures in 

differentiating between sitting and standing in the presence or 

absence of visual information. 

METHODS

Eleven healthy young adults were asked to 1) stand quietly on 

a force platform (10 Hz) looking forward (STAND), 2) sit in a 

yoga style position directly on the force platform with their 

hands in their laps (SIT), and 3) sit upright on a stool (base 

32x34 cm, height 75 cm) placed in the middle of the force 

platform with their arms to their sides and their feet not 

supported by the ground or the stool (SITSTOOL).  Each 

position was maintained for five minutes and repeated three 

times with eyes open and three times with eyes closed. The 

coordinates of the center of pressure (COP) in the medial-

lateral (ML) and anterior-posterior (AP) were calculated for 

each trial. Then, the unfiltered COP coordinates were analyzed 

using Chaos Data Analyzer Professional software to calculate 

four nonlinear measures (Correlation Dimension CoD, 

Lyapunov Exponent LyE, Hurst Exponent H, and the 

Lyapunov Exponent after the time series were surrogated 

SLyE) [2]. To calculate H, all data were first integrated. To 

calculate our nonlinear measures, we first reconstructed the 

state space by estimating the embedding dimensions (ED). ED 

is a measure of the number of dimensions needed to unfold a 

given attractor. This parameter was calculated with the Tools 

for Dynamics software [2]. We also calculated five linear 

measures (Root Mean Square RMS, Mean Distance MD, Total 

Excursion TE, Mean Velocity MV, and mean Total Excursion 

per second TEt) [5]. Statistical analysis was performed by 

either paired t-tests or ANOVA with further post hoc analysis 

when necessary. 

RESULTS AND DISCUSSION 

No significant differences were found for ED (mean=4.83). 

Thus ED equal with 5 was used for all subsequent nonlinear 

calculations. Our results showed that postural sway 

fluctuations for all postures examined had deterministic nature 

(paired t-tests; mean LyE=0.245, SLyE=0.268, p<.0005). A 

system is shown to have deterministic nature (orderly 

fluctuations), if the LyE is positive and is significantly 

different than SLyE [2]. We also found a mean H=1.005331 

with no significant differences between conditions or 

directions (paired t-tests). H is a measure of persistence 

(memory) of a given fluctuation in a time series. This H value 

suggests that the deterministic patterns in posture have long 

range memory similar to the 1/f noise found in heart rhythms 

[4]. We also found that nonlinear measures were able to better 

differentiate between sitting and standing. LyE (a measure of 

local stability, higher stability equals smaller LyE) in the ML 

and CoD (a measure of degrees of freedom) in ML and AP 

demonstrated significant differences between STAND and SIT 

(p=.002, p=.002, p=.003) and STAND and SITSTOOL 

(p=.007, p<.0005, p=.003). Significant differences were also 

found between STAND and SIT in the linear measures of TE, 

MV, and TEt in the AP (p=.034, p=.034, p=.034) and TE, 

MV, TEt, and MD in the ML (p=.004, p=.004, p=.004, 

p=.004, p=.020). In addition significant differences were 

exhibited between SIT and SITSTOOL for the linear measures 

TE, MV, and TEt in the AP (p=.001, p=.001, p=.001) and ML 

(p=.002, p=.002, p=.002). Curiously, no differences were 

found in the linear measures between STAND and SITSTOOL 

which  suggests that it was the distance from the center of 

gravity to the force platform that influenced the linear 

measures, rather than characteristics of the COP time series 

itself. Also, while the linear measure values were different, 

they measured the same relationships (identical p values). 

However when differentiating between vision conditions the 

nonlinear measures performed poorly while the linear 

measures demonstrated some differences. Only RMS and TEt 

in the ML showed significant differences between eyes open 

and closed (p=.036, p=.018). However significant interactions 

were found in TE, MV, and TEt in both AP (p=.04, p=.038, 

p=.038) and ML (p=.018, p=.018, p<.0005) and LyE in ML 

(p=.027). With the exception of TE and TEt in the AP, these 

interactions were the result of the eyes open values being 

larger than the eyes closed values during STAND, while the 

eyes open and eyes closed values were the same in both sitting 

conditions. This may be due to differing use of sensory 

information, while maintaining upright standing vs. sitting. 

There was also a discrepancy in the general trends found in the 

data. MD and RMS in AP, CoD and H in ML increased from 

eyes open to eyes closed, while TE, MV, LyE, CoD, and H in 

AP and RMS, MD, TE, MV, and LyE in ML decreased from 

eyes open to closed. This is not altogether surprising as Chiari 

et al. [5] found that while most subjects’ sway increases with 

their eyes closed, there exists a second class of individuals 

who sway less with their eyes open. In conclusion, the results 

demonstrated that posture is deterministic and persistent and 

that nonlinear tools are able to pierce into the structure of 

posture. However, more work needs to be done to determine 

whether these tools can contribute to sensory understanding. 
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