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INTRODUCTION

In human motion studies, inverse dynamics analysis is the
standard technique used to gain insight into the net
summation of all muscle activity at each joint. In the
inverse dynamics method, the joint forces and joint moments
of force are calculated from a prescribed movement. Since
the segmental movements, in contrast to the internal forces,
can be measured, this method is commonly applied for the
analysis of measured movements.

A full kinematic description obtained from motion capture
of marker positions is sufficient to obtain an inverse
solution; however, motion capture is often combined with
output from other sensors, including force plates, in order to
improve the precision of the estimated joint loads. Since
the optimal representation of the dynamic equations of
motion will differ depending on the available sensors,
inverse dynamics is in general considered a multi-modal
sensing problem (Dariush et al. 2002). Regardless of the
sensing modes, there are two fundamental limitations
associated with all inverse dynamics problems. First, the
inverse dynamics equations are functions of linear and
angular accelerations of body segments, requiring the
calculations of higher order derivatives of experimental data
contaminated by noise — a notoriously error prone operation
(Cullum 1971). Second, the applicability of inverse
dynamics is limited to the “analysis” problem. In other
words, the solution cannot be used directly to answer the
“what if” type questions (or the “synthesis” problem)
typically encountered in clinical applications and addressed
by forward dynamics simulations.

To address the problem of noise in numerical differntiation,
sophisticated numerical schemes are available and provide
estimates of higher order derivatives (Hatze 1981, Woltring
1985, Simon 1991); however, the reliability of results is
limited since there is no optimal solution or all-purpose
automatic method to filter biomechanical data (Giakas and
Baltzopoulos 1997). To avoid errors due to higher order
derivatives, researchers have combined optimization
techniques with a forward dynamics method to calculate the
joint moments of force. In particular, Chao and Rim (Chao
and Rim 1973) used steepest descent optimization in liu of
explicit differentiation for normal walking motion. In their
method, convergence and stability are not guaranteed and a
solution often requires a very good initial guess of the joint
torques. Runge et al. (Runge et al 1995) used a linear
quadratic follower (LQF) to estimate the joint moments
exerted by humans perturbed by support surface movements.
The LQF algorithm does not employ numerical
differentiation as constraints, but rather employs constraints
based on specification of a cost function.  The method
produces a stable solution, and is guaranteed to converge.
However, the LQF is based on linearization about an
operating region and the results have been demonstrated for
a small range of motion within this linear operating region.
More recently, Dariush et al (Dariush et. al. 2002)

demonstrated that the proposed LQF algorithm is robust for
a large range of motion, beyond the range of linearization.

This paper presents a new control theoretic framework for
the analysis and synthesis of human motion whereby the
estimation of internal forces and moments has been
formulated as a trajectory tracking control problem. The
objective of the tracking controller is to obtain a set of forces
and moments that when applied to a forward model will
reproduce or track the measured kinematic data. In
particular, tracking is achieved by employing a non-linear
control law that linearizes and decouples the states of the
system. This technique represents a forward dynamics
solution to the general multi-modal inverse dynamics
problem. The proposed algorithm overcomes the limitations
of the aforementioned methods and represents a simple, yet
powerful method for both the analysis and synthesis of
human motion. In particular, the proposed method is stable,
guaranteed to converge, computationally efficient (real
time), does not require acceleration computations, and is
predictive.

METHODS

The proposed approach uses the tandem combination of
inverse and forward dynamics with the trajectory tracking
feedback structure shown in Figure 1. The required
sensory inputs include the measured kinematics derived
from motion capture of markers attached to the body.
Additional sensing modes, such as ground reaction forces,
can be optionally incorporated to improve the precision.
The tracking controller estimates a set of joint loads that
when applied to the forward dynamics integration block,
would generate simulated kinematics that are identical to the
measured kinematics.
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Figure 1: Architecture for the proposed joint load
estimation method.

The representation of the equations in the inverse and
forward dynamics depends on the available sensors. For a
given sensing modality, there corresponds a set of forward
dynamics equations S that describe the motion of the
musculoskeletal system. Since S is never known
precisely, we can estimate (or model) iS' and represent it by
S . The inverse dynamics model, S °, is a transformation



of quantities obtained from a set of inputs derived from
measurements to the estimated joint loads.

Let ¢, represent a vector of “desired” generalized
coordinates derived from kinematic measurements, i.e
motion capture data. The vectors ¢, and g, represent the

velocity and acceleration of the generalized coordinates,
respectively.  Let the vector P represent measurements
from additional sensing modalities, which may be optionally
used in the inverse dynamics analysis. The optional
measurements may include, for example, force plate data, or
measurements from accelerometers.

In inverse dynamics analysis, the joint loads, denoted here
by the vector U, are computed as an algebraic function of
the kinematics, their first and second derivatives, and other
sensory inputs.

U=S5"(q:,44>Gs5P) (1)

In the proposed method, the solution is based on a control
law that tracks the desired (or measured) kinematics. The
proposed forward dynamics solution to the multi-modal
inverse dynamics problem has the following form,

U=5"¢.4,",P) @)

where

q* =4, +K,(q,—9)+K,(q,—q) 3

The control law in Equation 2 computes the joint loads, U,
that when applied to S would generate the simulated
motion ¢ and reproduce the desired kinematics ¢, . The
tracking error ¢ = ¢, —¢q can be forced to zero with the
fastest possible non-oscillatory response by increasing the
position feedback gains K , and constraining the velocity
feedback gains K to produce a critically damped response

(Craig, 1989).
K, =2JK, ©)

The detailed block-diagram of the proposed method is
illustrated in Figure 2.

As in the inverse dynamics approach, the inputs in the
proposed algorithm include the desired kinematics, ¢,
derived from motion capture measurements, and estimates
of their velocities,g,. If additional sensory inputs are
available, such as ground reaction forces, they may be
incorporated in the vector P . A major distinction of the
proposed formulation over the inverse dynamics approach is
that the method incorporates feedback from simulated states,
and is therefore a forward dynamics solution. As will be
shown in the next section, the tracking error can be forced to
zero by adjusting the feedback gains, regardless of whether
or not the accelerations, G, , are used. Therefore, the desired
acceleration term should be included only if there is high
confidence in the reliability of the data and the filtering
method. Here, the term ¢ is referred to as the error
corrected acceleration term. It involves position and
velocity feedback which completely linearizes and

decouples all the states. In other words, the method is
guaranteed to achieve near perfect tracking for each state ,
independently and in real time. In the following section,
the error dynamics of the proposed algorithm are presented
in detail.

g =

5 -
hY 194 S
Inverse > Forward =
dynamics AYNAMNICS [rm—

7 f

Figure 2: Detailed block-diagram of the proposed method.
The inputs include the measured (or desired) kinematics
described by a vector of generalized coordinates g, and
optional vector of additional sensory inputs P. The dashed
lines are optional.

Error Dynamics

The joint torque and force estimation problem has been
formulated as a tracking problem using the nonlinear
feedback control law described by Equation 2. In order to
analyze the tracking performance, it is instructive to
consider the closed loop error dynamics. Consider the output
of the inverse model in Figure 2, representing the control
law in Equation 2. If this control law is applied to the
forward model, the following closed loop relation is
obtained,

G,—4+K (g, —9)+K,(q,—q) (5

Let e denote the error between the measured kinematics,
q,, and the simulated state variable, ¢, obtained by
integration in the direct model.

€e=q, -4 (6)

In the following, the error dynamics for two scenarios are
considered.

Case 1: Accelerations are included:

If accelerations are included, and in the ideal situation of
perfect measurements and zero error in numerical
differentiation, the closed loop error dynamics is given by,

e+Ke+K,=0 @)

The error for each state can be independently controlled by
eigenvalue assignment. Let A, and A, denote the
eigenvalues of the above differential equation. A critically
damped solution with real and equal eigenvalues is given by

e(t)=ce™ +c,te =0 ®)



It is obvious that the error, as given by Equation 8, can be
forced to zero if the eignevalues are negative and large.

The relation between K and K, to achieve a critically

damped response is given by

K, =2JK, ©

A critically damped solution is desired because it yields the
fastest possible non-oscillatory response. Selecting a
positive and large feedback gain will force the error to zero.

Case 2: Ignoring accelerations:

Suppose the desired accelerations estimated from double
differentiation of measured kinematics are ignored by
neglecting the term ¢, . The closed loop error dynamics of
this system is expressed by the following non-homogeneous
differential equation.

e+Ke+K,=q, (10)

Although the solution to the above differential equation
contains a forcing term, assuming the acceleration term ¢,
is bounded, the error will converge to zero by assigning the
eigenvalues to have negative and real parts. As before, the
feedback gains may be appropriately designed for a
critically damped response by using Equation 9.

Ilustrative Example

A typical application of inverse dynamics analysis involves
integration of motion capture and force plate measurements
as inputs to an iterative “ground up” Newton-Euler inverse
dynamics procedure. This procedure is referred to as the
traditional inverse dynamics problem. The proposed
concept. which represents a forward dynamics solution to
the traditional inverse dynamics problem is achievable using
the principles developed in this paper. The detailed analysis
and formulation of the proposed method for the combined
motion capture and force plate sensing modality involves
three steps as outlined below.

The first step involves formulating the dynamic equations
of motion as a recursive ground up inverse dynamics
problem. To do so, consider the free body diagram of an
isolated body segment which forms a serial chain with its
two neighboring segments (see Figure 3). This figure
illustrates the description of the global frame, position
vectors, and all forces and moments acting on the body.

Suppose body segment i is connected in a serial chain to its
neighbors, body segment i-/ and body segment i+/. Let X
and O be the generalized coordinates, representing the
position of the center of mass and the angle with respect to
the y-axis, respectively. The vectors L, =[L,, L Py 1",
andL, =[L,, LDy]T originate at the center of mass
and terminate at the
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Figure 3: Free body diagram of an isolated body segment ¢
attached in a serial chain to it’s neighbours i-/ and i+/.

proximal and distal joint positions, respectively. Let X ,
O be respectively, the accelerations of the center of mass,
and angular acceleration. Let m be the mass, [ the
moment of inertia, and g the acceleration due to gravity.
Let the joint torque and reaction force at the proximal and
distal segments be described by Tp,Tp,F,, and F),
respectively.  The Newton Euler equations for an isolated
body segment is given by,

mX=F,— F,— mg (11)

I0=L, xF,— L,xF,+ 1, -1, (12)
In step 2 of the proposed algorithm, the Newton Euler
equations are expressed in matrix form in such a way that all

generalized coordinates, inputs, and outputs, are separated
by linear matrix algebra.

Mg=A4,(q)U,+ Ay(q) U, + P (13)

where the generalized coordinates, are represented by the
3x1 vector ¢

g=[x 6] (14)

The joint loads at the proximal and distal section are
represented by a 3x1 vector, respectively

Uy :[FD TD] ’ (15)

Up= [FP TP] ' (16)

The mass matrix is given by the 3x3 matrix ,
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The 3x1 vector P describes the gravitational forces
P=[0 —-mg O]T (18)

And the 3x3 matrices A, and A, are functions of the

generalized coordinate,

1 0
Ay(@)=| 0 10 (19)
pr  Lpy
-1 0 0
A ()= 0 -1 0 (20)
_LPY _LPX -1

By substituting the desired generalized coordinates , g, , for
q and rearranging terms in Equation 13, the proximal joint
loads can be expressed in terms of the distal joint loads
using the following relation,

Up = AP(qd)_l(M G, —A,(q,)U,—P) @1

Equation 21 represents the standard inverse dynamics
relation for an iterative 2D analysis of an isolated body
segment. This procedure can be repeated iteratively, using
the ground reaction force as a constraint to recursively
compute the forces and moments at the proximal end of each
successive segment.

In step three of the proposed algorithm, the input to the
inverse dynamics procedure given by Equation 21 involves a
feedback term. The solution is expressed by

Up=4,(q) ' (M § -A4,(9)U,—-P) (22

where ¢ " is given by Equation 3. The distinction between

the proposed solution given by Equation 22, and the

standard inverse dynamics solution given by Equation 21 is
as follows:

o The desired accelerations ¢, have been replaced with
the error correction acceleration, q ,which does not
explicitly require the second order derivative of the
measured generalized coordinates.

e The matrices A,(q,) and A,(gq,), which are
functions of the desired generalized coordinates, have
been are replaced with A,(g) and A,(q) which are
functions of the simulated generalized coordinates.

RESULTS AND DISCUSSION

Synthetically generated kinematic data for rhythmic motion
was injected with random noise of variance 5 mm and used
as input to drive a three link lower extremity planar model.
Figure 4 illustrates the mean absolute tracking error | e | of
the hip flexion angle and the mean error of the estimated hip
joint torque (normalized by the range in torque values) as a

function of K Py The results support the theory that by
increasing the feedback gain, the tracking error can be
forced to nearly zero. This trend is evidenced for a number
of other simulations, including ones with real experimental
data.  Conceptually, if the tracking error can be forced to
zero, then the torque error can be forced to zero as well.
Note that in these simulations, accelerations obtained from
the desired (or measured) kinematics were not included in
the control law.

Torque Error & Tracking Error

3.5 —0.14
. E))
3t ‘\.‘4— Tracking Error < J0.12
= 5
(D ‘t =
£2.5 % w 10.1
> >
| c
5 2 % 10.08
L Torque Error r_‘g
1.5} < 10.06
2 (o
3 [}
| = {0.04
0.5 - _ . - .02
0 100 200 Kp 300 400 50

Figure 4: Tracking error and Torque estimation error as a
function of the feedback gain Kp.

In the proposed formulation, the parameters of the forward
dynamic model can be changed in order to observe the
predictive capability of the method. The type of question
that can be posed may be stated as “what would happen
if....”.  For example, an orthopedic surgeon may ask “what
would happen if I transferred a muscle from one insertion
point to another?” Or a biomechanics researcher may ask
“what would happen if I changed the physical parameters of
the forward model....how would that alter the resulting
motion?” Such phenomenon can be observed because the
analysis is based on forward dynamic simulation. If the
forward dynamics model differs from the inverse dynamics
model, the simulated motion will not track the measured
motion. This property opens the door to addressing a wide
range of “what if” type questions.

SUMMARY

A new algorithm has been presented for analysis and

synthesis of human motion from different sensing

modalities. The proposed algorithm has the following
unique attributes:

e It is shown that the tracking error can be forced to zero
without using acceleration estimates from noisy marker
measurements.

e The solution to obtain estimates of joint load is fast (real
time), guaranteed to converge, and is self starting, i.e.
does not require an initial solution.

e The method is very general and can be applied to any
class of multi-sensory joint torque estimation problem.

e The method is based on a forward dynamics solution
and is therefore capable of predicting new motions by
altering S,a very useful attribute for answering “what
if” type questions.
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