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INTRODUCTION 
 
In human motion studies, inverse dynamics analysis is the 
standard technique used to gain insight into the net 
summation of all muscle activity at each joint.   In the 
inverse dynamics method, the joint forces and joint moments 
of force are calculated from a prescribed movement.  Since 
the segmental movements, in contrast to the internal forces, 
can be measured, this method is commonly applied for the 
analysis of measured movements.  
 
A full kinematic description obtained from motion capture 
of marker positions is sufficient to obtain an inverse 
solution; however, motion capture is often combined with 
output from other sensors, including force plates, in order to 
improve the precision of the estimated joint loads.   Since 
the optimal representation of the dynamic equations of 
motion will differ depending on the available sensors, 
inverse dynamics is in general considered a multi-modal 
sensing problem (Dariush et al. 2002).   Regardless of the 
sensing modes, there are two fundamental limitations 
associated with all inverse dynamics problems.  First, the 
inverse dynamics equations are functions of linear and 
angular accelerations of body segments, requiring the 
calculations of higher order derivatives of experimental data 
contaminated by noise – a notoriously error prone operation 
(Cullum 1971).   Second, the applicability of inverse 
dynamics is limited to the “analysis” problem.  In other 
words, the solution cannot be used directly to answer the 
“what if” type questions (or the “synthesis” problem) 
typically encountered in clinical applications and addressed 
by forward dynamics simulations.    
 
To address the problem of noise in numerical differntiation, 
sophisticated numerical schemes are available and provide 
estimates of higher order derivatives (Hatze 1981, Woltring 
1985, Simon 1991); however,  the reliability of results is 
limited since there is no optimal solution or all-purpose 
automatic method to filter biomechanical data (Giakas and 
Baltzopoulos 1997).  To avoid errors due to higher order 
derivatives, researchers have combined optimization 
techniques with a forward dynamics method to calculate the 
joint moments of force. In particular, Chao and Rim (Chao 
and Rim 1973) used steepest descent optimization in liu of 
explicit differentiation for normal walking motion.  In their 
method, convergence and stability are not guaranteed and a 
solution often requires a very good initial guess of the joint 
torques.  Runge et al. (Runge et al 1995) used a linear 
quadratic follower (LQF) to estimate the joint moments 
exerted by humans perturbed by support surface movements. 
The LQF algorithm does not employ numerical 
differentiation as constraints, but rather employs constraints 
based on specification of a cost function.   The method 
produces a stable solution, and is guaranteed to converge. 
However, the LQF is based on linearization about an 
operating region and the results have been demonstrated for 
a small range of motion within this linear operating region.   
More recently, Dariush et al (Dariush et. al. 2002) 

demonstrated that the proposed LQF algorithm is robust for 
a large range of motion, beyond the range of linearization.   
 
This paper presents a new control theoretic framework for 
the analysis and synthesis of human motion whereby the 
estimation of internal forces and moments has been 
formulated as a trajectory tracking control problem.  The 
objective of the tracking controller is to obtain a set of forces 
and moments that when applied to a forward model will 
reproduce or track the measured kinematic data. In 
particular, tracking is achieved by employing a non-linear 
control law that linearizes and decouples the states of the 
system.  This technique represents a forward dynamics 
solution to the general multi-modal inverse dynamics 
problem.  The proposed algorithm overcomes the limitations 
of the aforementioned methods and represents a simple, yet 
powerful method for both the analysis and synthesis of 
human motion.  In particular, the proposed method is stable, 
guaranteed to converge, computationally efficient (real 
time), does not require acceleration computations, and is 
predictive. 
 
METHODS 
 
The proposed approach uses the tandem combination of 
inverse and forward dynamics with the trajectory tracking 
feedback structure shown in Figure 1.    The required 
sensory inputs include the measured kinematics derived 
from motion capture of markers attached to the body.  
Additional sensing modes, such as ground reaction forces, 
can be optionally incorporated to improve the precision.   
The tracking controller estimates a set of joint loads that 
when applied to the forward dynamics integration block, 
would generate simulated kinematics that are identical to the 
measured kinematics. 
 

 
 
Figure 1:  Architecture for the proposed joint load 
estimation method. 
 
The representation of the equations in the inverse and 
forward dynamics depends on the available sensors.  For a 
given sensing modality, there corresponds a set of forward 
dynamics equations S  that describe the motion of the 
musculoskeletal system.    Since S  is never known 
precisely, we can estimate (or model) S  and represent it by 
Ŝ .  The inverse dynamics model, 1ˆ−S , is a transformation 



of quantities obtained from a set of inputs derived from 
measurements to the estimated joint loads.   
 
Let dq  represent a vector of “desired” generalized 
coordinates derived from kinematic measurements, i.e 
motion capture data.  The vectors dq&  and dq&&  represent the 
velocity and acceleration of the generalized coordinates, 
respectively.   Let the vector P  represent measurements 
from additional sensing modalities, which may be optionally 
used in the inverse dynamics analysis.  The optional 
measurements may include, for example, force plate data, or 
measurements from accelerometers. 
 
In inverse dynamics analysis, the joint loads, denoted here 
by the vector U, are computed as an algebraic function of 
the kinematics, their first and second derivatives, and other 
sensory inputs. 
 

),= − PqqqSU ddd &&& ,,(ˆ 1  (1) 
 
In the proposed method, the solution is based on a control 
law that tracks the desired (or measured) kinematics.   The 
proposed forward dynamics solution to the multi-modal 
inverse dynamics problem has the following form, 
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where  
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The control law in Equation 2 computes the joint loads, U , 
that when applied to Ŝ  would generate the simulated 
motion q  and reproduce the desired kinematics dq . The 
tracking error qqe d −=  can be forced to zero with the 
fastest possible non-oscillatory response by increasing the 
position feedback gains pK  and constraining the velocity 
feedback gains vK  to produce a critically damped response 
(Craig, 1989).  
 

Pv KK 2=    (4) 
 

 The detailed block-diagram of the proposed method is 
illustrated in Figure 2. 
 
As in the inverse dynamics approach, the inputs in the 
proposed algorithm include the desired kinematics, dq , 
derived from motion capture measurements, and estimates 
of their velocities, dq& .   If additional sensory inputs are 
available, such as ground reaction forces, they may be 
incorporated in the vector P . A major distinction of the 
proposed formulation over the inverse dynamics approach is 
that the method incorporates feedback from simulated states, 
and is therefore a forward dynamics solution. As will be 
shown in the next section, the tracking error can be forced to 
zero by adjusting the feedback gains, regardless of whether 
or not the accelerations, dq&& , are used.  Therefore, the desired 
acceleration term should be included only if there is high 
confidence in the reliability of the data and the filtering 
method.    Here, the term *q&& is referred to as the error 
corrected acceleration term.   It involves position and 
velocity feedback which completely linearizes and 

decouples all the states.  In other words, the method is 
guaranteed to achieve near perfect tracking for each state , 
independently and in real time.   In the following section,   
the error dynamics of the proposed algorithm are presented 
in detail. 
 
 

 
   

 
Figure 2:  Detailed block-diagram of the proposed method.   
The inputs include the measured (or desired) kinematics 
described by a vector of generalized coordinates q, and 
optional vector of additional sensory inputs P.   The dashed 
lines are optional. 
 
Error Dynamics 
 
The joint torque and force estimation problem has been 
formulated as a tracking problem using the nonlinear 
feedback control law described by Equation 2. In order to 
analyze the tracking performance, it is instructive to 
consider the closed loop error dynamics. Consider the output 
of the inverse model in Figure 2, representing the control 
law in Equation 2.  If this control law is applied to the 
forward model, the following closed loop relation is 
obtained, 
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Let e  denote the error between the measured kinematics, 

dq , and the simulated state variable, q , obtained by 
integration in the direct model. 
 

qqe d −=    (6) 
 
In the following, the error dynamics for two  scenarios are 
considered. 
 
Case 1:   Accelerations are included:   
 
If accelerations are included, and in the ideal situation of 
perfect measurements and zero error in numerical 
differentiation, the closed loop error dynamics is given by, 
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The error for each state can be independently controlled by 
eigenvalue assignment.  Let 1λ  and 2λ  denote the 
eigenvalues of the above differential equation.  A critically 
damped solution with real and equal eigenvalues is given by 
 

0)( 21 =+= 21 λλ tt etcecte   (8) 
 



It is obvious that the error, as given by Equation 8, can be 
forced to zero if the eignevalues are negative and large. 
The relation between vΚ  and PΚ  to achieve a critically 
damped response is given by 
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A critically damped  solution is desired because it yields the 
fastest possible non-oscillatory response.    Selecting a 
positive and large feedback gain will force the error to zero. 
 
Case 2:   Ignoring accelerations:   
 
Suppose the desired accelerations estimated from double 
differentiation of measured kinematics are ignored by 
neglecting the term dq&& .  The closed loop error dynamics of 
this system is expressed by the following non-homogeneous 
differential equation. 
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Although the solution to the above differential equation 
contains a forcing term, assuming the acceleration term dq&&  
is bounded, the error will converge to zero by assigning the 
eigenvalues to have negative and real parts. As before, the 
feedback gains may be appropriately designed for a 
critically damped response by using Equation 9. 
 
Illustrative Example 
 
A typical application of inverse dynamics analysis involves 
integration of motion capture and force plate measurements  
as inputs to an iterative “ground up” Newton-Euler inverse 
dynamics procedure. This procedure is referred to as the 
traditional inverse dynamics problem.  The proposed 
concept. which represents a forward dynamics solution to 
the traditional inverse dynamics problem is achievable using 
the principles developed in this paper.  The detailed analysis 
and formulation of the proposed method for the combined 
motion capture and force plate sensing modality involves 
three steps as  outlined below. 
 
The first step involves formulating the dynamic  equations 
of motion as a recursive ground up inverse dynamics 
problem.  To do so, consider the free body diagram of an 
isolated body segment which forms a serial chain with its 
two neighboring segments (see Figure 3).  This figure 
illustrates the description of the global frame, position 
vectors, and all forces and moments acting on the body.   
 
Suppose body segment  i is connected in a serial chain to its 
neighbors, body segment i-1 and body segment i+1.  Let X  
and θ  be the generalized coordinates, representing the 
position of the center of mass and the angle with respect to 
the y-axis, respectively.   The vectors T

PyPXP LLL ][= , 
and T

DyDXD LLL ][=  originate at the center of mass 
and terminate at the  

 
Figure 3:  Free body diagram of an isolated body segment i 
attached in a serial chain to it’s neighbours i-1 and i+1. 
 
proximal and distal joint positions, respectively.  Let  X&& , 
θ&&  be respectively, the accelerations of the center of mass, 
and angular acceleration.  Let m  be the mass, I  the 
moment of inertia, and g the acceleration due to gravity.   
Let the joint torque and reaction force at the proximal and 
distal segments be described by DF,, PD ττ , and PF , 
respectively.    The Newton Euler equations for an isolated 
body segment is given by, 
 

g m  − − = PD FFXm &&   (11) 

PDPPDD FLFLI τ−τ  + ×− ×=θ&&   (12) 
 
In step 2 of the proposed algorithm, the Newton Euler 
equations are expressed in matrix form in such a way that all 
generalized coordinates, inputs, and outputs, are separated 
by linear matrix algebra. 
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where the generalized coordinates, are represented by the 
3x1 vector q  

[ ]θXq =    (14) 
 

The joint loads at the proximal and distal section  are 
represented by a 3x1 vector, respectively 

[ ] T
DDD FU τ=   (15) 
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The mass matrix is given by the 3x3 matrix , 
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The 3x1 vector P describes the gravitational forces 
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And the 3x3 matrices DA  and PA are functions of the 
generalized coordinate, 
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By substituting the desired generalized coordinates , dq ,  for 
q and  rearranging terms in Equation 13,  the proximal joint 
loads can be expressed in terms of the distal joint loads 
using the following relation, 
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Equation 21 represents the standard inverse dynamics 
relation for an iterative 2D analysis of an isolated body 
segment.  This procedure can be repeated iteratively, using 
the ground reaction force as a constraint to recursively 
compute the forces and moments at the proximal end of each 
successive segment. 
 
In step three of the proposed algorithm, the input to the 
inverse dynamics procedure given by Equation 21 involves a 
feedback term.   The solution is expressed by 
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where *q&&  is given by Equation 3.  The distinction between 
the proposed solution given by Equation 22, and the 
standard inverse dynamics solution given by Equation 21 is 
as follows: 
• The desired accelerations dq&&  have been replaced with 

the error correction acceleration, *q&& ,which does not 
explicitly require the second order derivative of the 
measured generalized coordinates. 

• The matrices )( dP qA  and )( dD qA , which are 
functions of the desired generalized coordinates, have 
been are replaced with )(qAP  and )(qAD  which are 
functions of the simulated generalized coordinates. 

 
RESULTS AND DISCUSSION 
 
Synthetically generated kinematic data for rhythmic motion 
was injected with random noise of variance 5 mm  and used 
as input to drive a three link lower extremity planar model.  
Figure 4 illustrates the mean absolute tracking error || e  of 
the hip flexion angle and the mean error of the estimated hip 
joint torque (normalized by the range in torque values) as a 

function of pK .    The results support the theory that by 
increasing the feedback gain, the tracking error can be 
forced to nearly zero.  This trend is evidenced for a number 
of other simulations, including ones with real experimental 
data.     Conceptually, if the tracking error can be forced to 
zero, then the torque error can be forced to zero as well.   
Note that in these simulations, accelerations obtained from 
the desired (or measured) kinematics were not included in 
the control law. 
 

 
Figure 4:  Tracking error and Torque estimation error as a 
function of the feedback gain Kp. 
 
In the proposed formulation, the parameters of the forward 
dynamic model can be changed in order  to observe the 
predictive capability of the method.  The type of question 
that can be posed may be stated as “what would happen 
if….”.    For example, an orthopedic surgeon may ask “what 
would happen if I transferred a muscle from one insertion 
point to another?”  Or a biomechanics researcher may ask 
“what would happen if I changed the physical parameters of 
the forward model….how would that alter the resulting 
motion?”   Such phenomenon can be observed because the 
analysis is based on forward dynamic simulation.   If the 
forward dynamics model differs from the inverse dynamics 
model, the simulated motion will not track the measured 
motion.   This property opens the door to addressing a wide 
range of “what if” type questions. 
 
SUMMARY 
 
A new algorithm has been presented for analysis and 
synthesis of human motion from different sensing 
modalities. The proposed algorithm has the following 
unique attributes: 
• It is shown that the tracking error can be forced to zero 

without using acceleration estimates from noisy marker 
measurements. 

• The solution to obtain estimates of joint load is fast (real 
time), guaranteed to converge, and is self starting, i.e. 
does not require an initial solution. 

• The method is very general and can be applied to any 
class of multi-sensory joint torque estimation problem. 

• The method is based on a forward dynamics solution 
and is therefore capable of predicting new motions by 
altering Ŝ , a very useful attribute for answering “what 
if” type questions. 
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